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EFFECTS OF ANGLE OF ATTACK AND BLUNTNESS ON LAMINAR
HEATING-RATE DISTRIBUTIONS OF A 15° CONE
AT A MACH NUMBER OF 10.6
By Joseph W. Cleary

Ames Research Center
SUMMARY

An investigation was conducted to determine the effects of angle of
attack and bluntness on the laminar heating-rate distributions of a 15° semi-
apex cone. Heating rates were obtained from wind-tunnel tests in air at a
Mach number of 10.6 for free-stream unit Reynolds numbers of 0.4x108, 1.2x10°,
and 1.8x10%® per foot. Included are measurements of surface streamlines made
by an oil-streak technique. Results are presented for a range of angles of
attack from 0° to 20° and bluntness ratios from O to 0.183.

The results show that, at o = OO, increasing bluntness reduced the
heating rates and prevented the onset of boundary-layer transition. Bluntness
was effective also, at o > 0, in delaying transition on the lee side. On
the windward surface, bluntness distorted the flat-plate type heating-rate
distributions of the sharp cone. For the bluntest model, the windward heating-
rate distributions have minims and maxima that appear related to the pressure
distributions.

For a = 0°, good agreement of measured heating rates with sharp- and
blunted-cone theories was observed. Comparisons for o > 0° demonstrate the
general suitability of similarity theory for estimating laminar heating rates
on spherical, blunt cones. Comparisons of surface streamlines with inviscid
theory show significant effects of bluntness on boundary-layer crossflow; the
effects of crossflow on heating rates appear small for the angle-of -attack
range of the test.

INTRODUCTION

An evaluation of convective heating is an essential aspect to the proper
design of hypersonic vehicles. If 1ift is employed, heating may prove diffi-
cult to estimate even for laminar flows because of the difficulty of evaluat-
ing factors relevant to heating, such as boundary-layer profiles, entropy
gradients, and streamline geometry. For small angles of attack and bluntness,
estimating heating can be simplified since boundary-layer similarity may
apply. However, the range of application of boundary-layer similarity is not
well defined since it may depend on several parameters, for example, Reynolds
number, vehicle shape, and gas composition. There is, therefore, a necessity
for measurements of heating rates which designers may use directly and which
can serve to verify theoretical estimates.

The purpose of this investigation is to present measurements of the
effects of angle of attack and bluntness on laminar heating rates of a 150



semiapex cone. Results are presented from wind-tunnel tests in air at a Mach
number of 10.6. The tests spanned a range of bluntness (ratio of nose radius
to base radius) from O to 0.183 and angles of attack from O° to 20°. Results
are given for free-stream unit Reynolds numbers of 0.4x10%, 1.2x10%, and
1.8x108 per foot and for a ratio of wall to total temperature of about 0.3.
Model base diameter was 1 foot. An oil-streak technique was used to measure
the direction of the surface flow. A secondary objective of the present
investigation 1s to compare measurements with simplified approaches to estimat-
ing heating. Heating rates for sharp and blunt cones are compared with rates
predicted by similarity methods given in references 1 to 4. Surface stream-
lines relevant to heating are compared with inviscid predictions by the
approximate and exact methods of references 5 and 6, respectively. The present
results provide in more complete form the preliminary results given in
reference 7.

NOTATION
Cp pressure coefficient, (J& - l) _§§
P, M
c specific heat
F pressure function, equation (A10)
Gy stagnation-point velocity gradient function, equation (5)
g enthalpy
h scale factor, equation (A5)
L sharp-cone length
M Mach number
m exponent, equation (6)
An streamline spacing
jo) static pressure
o] heat-transfer rate
R radius of spherical nose
Re Reynolds number based on model length
s streamline coordinate
T temperature
t time



X, ¥ 52
X,r,0

X0 sT0o

max

min

velocity

rectangular coordinates

body~-axis cylindrical coordinates
wind-axis coordinates

angle of attack

pressure-gradient parameter, equation (h)
ratio of specific heats

cone semlapex angle

polar angle of the nose (sketch (c))
density

thickness

angle of streamlines to cone elements (sketch (d))

inclination of cone elements to the free-stream velocity

Subscripts
model base
edge of boundary layer
sphere-cone tangent point
maximim
minimum
stagnation point
sharp cone
stagnation line
transition
wall

free stream



Superscripts
* unit value
~ bluntest model
! differentiation

— effective value
APPARATUS AND TESTS

Pacility

The tests were conducted .in air in the Ames 3.5-Foot Hypersonic Wind
Tunnel. This faclility is a blowdown tunnel with a steady-state testing time
of about 1 to 2 minutes. The operation of the tunnel and the model support
mechanism is essentially automatic and data are recorded on magnetic tape.

The tests were made at a Mach number of 10.6 and a total temperature of

2000° R. Free-stream unit Reynolds numbers of the tests were 0.4x10%, 1.2x10°€,
and 1.8x10°® per foot corresponding to tunnel total pressures of 40O, 1200, and
1800 psia, respectively.

Models and Test Procedure

The models were constructed with thin shells from high purity nickel by
an electroforming process. Their wall thickness varied from about 0.10 inch
at the nose to 0.03 inch at the base. The model was a 15°-semiapex spherical,
blunt cone with a nominal nose radius of 1.10 inches. TInadvertently the nose
was electroformed slightly oblate. While the oblateness was not noticeable,
accurate measurements with a comparator showed that the radius of curvature at
the stagnation point was 1.25 inches. Variations of bluntness ratio, R/rb,
were achieved by attaching appropriate tips to an alternate model. Test
bluntness ratios were 0, 0.0625, 0.167, and 0.183 corresponding to nose radii
of 0, 0.375, 1.000, and 1.100 inches, respectively. The two extremes of this
range of bluntness are displayed by the model configurations in figure 1.
Here, the models are shown sting supported in the tunnel and mounted on the
side-~wall quick-insert device. The models were instrumented with three rows
of chromel-alumel thermocouples at circumferential angles ¢ of Oo, 90°, and
180°. Thermocouple positions and dimensional details of the models are given
in figure 2. Thermocouple positions for R/rb = 0.167 are irrelevant and are
not given since this bluntness was used exclusively for surface-flow tests.
Tests at various ¢@ were made by discrete rotation of the models.

The procedure for heat-transfer tests consisted in: (l) establishing
steady-state flow in the tunnel; (2) starting the thermocouple recording
equipment; and (3) quickly inserting the model into the flow at the desired
angle of attack. Prior to insertion, the model had an isothermal wall tem-
perature of about 5300 R. Insertion time was about 0.2 second and the ratio

L



of wall to total temperature Ty/T, for the initial part of the temperature-
time transient was about 0.27. A similar procedure was used for surface-flow
measurements. However, prior to insertion, the model was wrapped with a sheet
of paper and coated with a mixture of titanium oxide and oil. The paper was
clamped at the fore end by tips that feather-edged to the wrapped surface and
at the base by a clamping ring. The models were inserted into the flow for
about 3 seconds, which was sufficient to establish steady-state flow patterns.
After retraction, the paper was unwrapped and attached to a plane surface to
give developed patterns of the flow.

Heat -Transfer Data Reduction

The heat-transfer rates were evaluated by equation (1).

~ dTw (
4 = PywCywTw “gt 1)

Slopes of the measured temperature versus time curves dTw/dt were calculated
for each thermocouple by a machine-computed finite-difference technique.
Accuracy of heat-transfer-rate measurements was assessed from the repeatability
of the stagnation-point heating rate of the bluntest model. Several repeated
meagsurements of this heating rate agreed with each other and with theory

(ref. 8) within about %5 percent. For a = o° repeatability on the conical
surface was within about *6 percent for the three conical rays at ¢ = OO, 900,
and 180°. Since accuracy is related to the level of the heating rate, it is
believed that the accuracy of the lowest rates presented is about *20 percent.

RESULTS AND DISCUSSION

Experimental Heating-Rate Distributions

Measured heating rates for bluntness ratios R/ry of 0, 0.0625, and
0.183 are presented in tables I, II, and III, respectively. The rates have
been normalized by the theoretical stagnation-point heating rate of the
bluntest model qo for each Reynolds number and are tabulated as functions of
the sharp-cone axial coordinate xg/L. Theory of reference 8 was used to
estimate @, and the estimate was based on the measured radius of curvature
R = 1.25 inches. Distributions of q/§, for Re) = 1.2<10% per foot are pre-
sented in graphical form in figure 3 to illustrate the effects of varying ¢
when the model is at angle of attack. To demonstrate the more significant
effects of angle of attack and bluntness, results for the leeward and windward
rays (@ = 0° and 1800, respectively) are plotted logarithmically in figure k.

Before considering effects of angle of attack, it is worth investigating
the extent to which the distributions are laminar for o = 0°. For this case,
laminar flat-plate theory predicts that on a logarithmic scale the sharp-cone
distributions should conform to a straight line with slope of -0.5. Figure k
shows that for R/rb = 0, experiment agrees well with this prediction except



over the afterpart of the model at the greater Reynolds numbers where
transition of the boundary layer is indicated by increased heating rates.
There is also good agreement between experiment and flat-plate theory for
small bluntness, R/rb = 0.0625, except when transition occurs near the model
base at the greater Reynolds numbers. Since it is apparent from figure L that
for R/rb = 0.183 the degree of bluntness is sufficient to preclude reasonable
comparison with flat-plate theory, distributions for this bluntness are com-
pared with the more applicable predictions of reference 3. The generally good
agreement with this theory shown in figure 4 indicates that the flow was lami-
nar for the Reynolds number range of the tests. Furthermore, figure 4 shows
that for o = O° heating rates decreased slightly with increasing bluntness
when the boundary layer was laminar. It is concluded that for o = 0°, the
onset of transition was delayed by either decreasing Reynolds number or
increasing bluntness.

Windward heating-rate distributions.- The analysis of windward
stagnation-line heating-rate distributions given in reference 9 indicates that
if the flow is laminar, these distributions should be straight lines with a
slope of -0.5, similar to those for a = o°. Figure L shows agreement of
experiment with this prediction for R/rp, = O and 0.0625 at 0 < o S 20° except
near the base at small o where transition occurs. On the other hand, the
distributions for R/rb = 0.183 are not straight lines but in some cases
develop minima and maxima. Reasons for these irregularities in the distribu-
tions are not clear, but it appears doubtful that transition is a factor since
increasing o delayed the onset of transition for lesser bluntness. Figure L
indicates that the position of minims and maxima are related in a general way
to the loci of minimum and maximum pressure (from ref. 10) shown superimposed
on the heating-rate distributions. The windward results indicate that for
specific angles of attack and values of xg/L, q/d, increased slightly with
increasing Reynolds number. Reasons for this increase are not clear.

Leeward heating-rate distributions.- It is apparent from the leeward
distributions on figure 4 that increasing o promoted the development of
transitional and turbulent flows. Since transition is of general interest, it
is worthwhile to show the effects of « more clearly. Therefore, estimates
of transition Reynolds number with unit Reynolds number ratio and local Mach
number are shown in figure 5. The
location of transition was estimated
from the heating-rate distributions
as indicated in sketch (a). Results
for R/rp = 0 (fig. 5(a)) were esti-
- mated for flow conditions at the
q/qo edge of thickened leeward boundary

layers using shock angles given in
o reference 11 and assuming isentropic
compression from the shock to the
_J boundary-layer edge. These esti-
xT/L:——————] mates are slightly greater than pre-
- liminary results given in reference?
XS/L because of refinements in the pres-
ent analysis. ©Since bluntness
Sketch (a). ratios are rather small, sharp-cone




unit Reynolds number ratio was used to estimate Rep for R/ry > 0 (fig. 5(b))
so as to avoid unrealistically low estimates of Rep. Values of Re*/Reé for
sharp and blunt cones shown in figure 5(b) illustrate this effect. However,
estimates of local Mach number for the blunt cones are based on isentropic
expansion of the flow from the stagnation point to the sharp-cone pressure.

Figure 5 shows that transition Reynoclds number for the lee side decreased
with increasing angle of attack in agreement with reference 12. Also, as has
been observed in references 13 and 14, transition Reynolds number increased
with increasing free-stream unit Reynolds number. While, in general, increas-
ing bluntness increased the transition Reynolds number, a reversal in this
trend is indicated at the higher angles of attack as bluntness increased from
0 to 0.0625.

Comparison of Experiment With Theory

Before experimental heating rates are compared with theory for o > 0°,
it is appropriate to make comparisons at o = O° since, for axisymmetric flows,
laminar theories for both sharp and blunt cones are well established.

Heating-rate comparisons for o = 0°. - Measured heating rates normalized
by qo are compared with theoretical predictions in figure 6. Comparisons
are made with measurements at ReX = 1.2<10® per foot as representative of the
test Reynolds number range. Theoretical sharp-cone heating rates shown in
figure 6(a) have been estimated by applying Mangler's transformation factor,
J-, to two different flat-plate theories: reference enthalpy theory of ref-
erence 1, and more exact solutions of the boundary layer given in reference 2.
Surface-flow properties used in the predictions were obtained from an inviscid
solution of conical flow by the method of characteristics. Figure 6(a) shows
that both theories agree well with experiment over the forward half of the
cone length where the flow was laminar. Differences shown between theories
are about the same ag the small scatter in the data, and it is apparent that
either theory 1is adequate for estimating sharp-cone heating rates.

Comparisons of blunt-cone theory with experiment are shown in figures 6(b)
and 6(c) for bluntness ratios of 0.0625 and 0.183, respectively. Similarity
theory from reference L4, as expressed by equations (2) to (5), was used to
predict the distributions shown.

q 1/2(p/p,) (ug/u,) (x/R) (g /ey )
R 72 (2)
Go[fs/R (/7o) (vg/ue) (x/R)® d(S/Rﬂ
where
gv/&w, = 0-936 + 0.90 B (3)



2{[4(ue /v 1/1a(s/R) 1} /S/R D e (57 (o) "
(p/pg) (ue/us)#(x/R)Z o
and

Gp = {[a(ug/uz)]/a(s/R)}Y 2 (5)

Pressures, velocities, and velocity gradients used in the theoretical estimates
are from a combined blunt-body and method of characteristics solution of the
inviscid flow from the program of reference 15. Pressure distributions
obtained by this method are shown in references 7 and 10 to agree well with
experiment for present test conditions. Theory has been applied in two dif-
ferent ways: (1) by estimating boundary-layer-edge conditions, assuming isen-
tropic expansion of the flow from the stagnation point; and (2) by estimating
ue/uoo assuming variable entronv at the boundary-layer edge. For the latter
case the local entropy at the edge was evaluated by matching the mass flow in
the boundary layer with the flow passing through the curved shock wave. The
shock shape was obtained from the aforementioned solution of the inviscid flow.
While this procedure is an approximation to the more formidable problem of
solving for boundary- and entropy-layer interactions, it does yield a realis-
tic estimate of the effects of entropy gradients.

Figure 6(c) shows that for R/r, = 0.183 the effects of entropy gradients
were small, and theory and experiment agree closely. Figure 6(b), on the
other hand, indicates that for R/rb = 0.0625 including effects of entropy
gradients increased the estimated heating rates about 10 to 15 percent. For
this bluntness, experiment agreed better with theory over the forward part of
the model when effects of entropy gradients were ignored. While this was not
the case over the afterpart of the model, the experimental results here may
have been influenced by incipient transition. It is apparent, therefore, that
for a = 0°, clearcut indications of significant entropy-gradient effects are
not observed experimentally. Attention is directed now to some simple
correlations of heating rates.

Sharp-cone correlation for o > 0°.- In lieu of an appropriate sharp-cone
theory for comparison at o > 09, a correlation of circumferential sharp-cone
heating rates is presented. Figure 7 shows this heating-rate correlation with
pressure after being normalized by windward stagnation-line wvalues Ffor the
same axial position xg/L. Figure 7(a) correlates heating rates with pres-
sures estimated by the tangent-cone approximation; the correlation in fig-
ure 7(b) is similar but the pressures are measured and the range of o 1is
more limited. OSymbols denote values of the coordinates for constant ¢ at
xg/L = 0.47, and vertical and horizontal bars designate the variations of
heating rates and pressures, respectively, for 0.18 < x¢/L < 0.90. Results
are shown for 30° < @ < 180° only since heating rates for ¢ = 0° do not cor-
relate well. From figure 7(a) it can be seen that with tangent-cone pressures,
sharp-cone heating rates were fairly well correlated by the relation




a _ (="
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with m = 0.667. While the correlation is not as good if measured pressures
are used (fig. 7(b)), it is, nevertheless, fair for a wide range of conditions.
It appears that better correlation with tangent-cone pressures may be fortui-
tous owing to the lower pressures predicted as the lee side is approached.
However, since stagnation-line heating rates can be estimated approximately by
swept-cylinder theory (see ref. 16, for example) and tangent-cone pressures
are readily evaluated, the correlation of figure 7 may prove useful for
simplified estimates of heating rates.

As a simpler alternate to the method of reference 16, stagnation-line
heating rates can be estimated by equation (7).

51 _ R ., = R/L 1 \ve .
qo J_ j:S]_rl wsz=(2 tén&xS/L) sin gy (7)

This approximation is based on simple sweep concepts and equations for the
stagnation-point heating rates of two-dimensional and axisymmetric bodies. In
equation (7) the windward stagnation-line heating rate gy 1s normalized by
the stagnation-point heating rate of an axisymmetric body of nose radius R;

r 1is the local radius of the cone normal to the cone axis. The angle ug;
represents an empirical correction to the angle between the stagnation line
and the free stream to account for differences from sweep theory that accrue
when a is not large. As shown in figure 8, equation (7) gives a good esti-
mate of stagnation-line heating rates for present test results when

Wg1 = a + & - 59,

Blunt -cone correlation for o > 0°. - Since heating rates were measured for
various bluntness ratios and test conditions, the experimental results can be
used to test whether there is boundary-layer similarity for cones of different
bluntness at angle of attack. TFor present test conditions, boundary-layer
similarity is implied by the heating-rate distribution predicted by
equation (8) (see refs. 3 and 17).
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Sketch (b) illustrates pertinent geometrical aspects of equation (8) when
applied to spherically blunted cones. It is evident from the dimensionless

S Streamline

e y)/Adjacent streamline
. HBn

Sketeh (b).

form of equation (8) and from sketch (b) that for geometrically similar flows,
the predicted distributions of q/qo as functions of x/R for constant @
are identical. Figure 9 shows a test of similarity by a correlation of pres-
ent experimental results for a = 20° using q/qo and X/R as coordinates.
Results shown are from tables II and III and are supplemented by limited unpub-
lished heating-rate distributions for a bluntness ratio of 0.35. In general,
good correlation of heating rates is shown in figure 9 for various test condi-
tions. Differences in the distributions for ¢ = 0° behind the transition
point are, of course, irrelevant. The greatest departures from similarity are
indicated for R/r-b = 0.183 and © = 180° over the afterpart of the model.
Since the entropy layer here is very thin (as demonstrated by pitot-pressure
traverses of ref. 11), differences shown are attributed to effects of model
scale on boundary-layer and entropy-layer interactions for which equation (8)
does not account. In view of the applicability of similarity principles
demonstrated by figure 9, measurements will now be compared with similarity

theory for 5° < o < 20°.

Heating-rate comparisons for o > o°. - Heating rates for blunt cones are
inherently more difficult to predict fcr o > 0° than for a = O° because the
geometry of streamlines at the boundary-layer edge must be known. The stream-
line geometry for inviscid flow can be determined by the accurate three-
dimensional method of characteristics as applied, for example, in reference 6.
However, this method entails significant computing effort, and computational
difficulties may arise for large o. As a simple alternative, the Newtonian
method in reference 5 has been selected for estimating streamline geometry.

10



The suitability of this approach will be scrutinized subsequently when
streamlines predicted by theory are compared with those from experiment. With
the streamline geometry known, heating rates were predicted by theory of ref-
erence 3. Details of the procedure and equations used for present heating-
rate estimates are given in appendix A. Assumptions were: (1) the local flow
expands isentropically from the stagnation point; and (2) the crossflow com-
ponent of velocity in the boundary layer is small and can be neglected.

Experimental blunt-cone heating rates normalized by g, and shown as
functions of x/R are compared with theory in figure 10. Theory was applied
with measured pressures given in reference 10 and with pressures estimated
from modifications to Newtonian theory given by equations (All) and (Al2). 1In
general, theory and experiment are shown to agree well for the angle-of-attack
range of the test, 5° < o < 20°. It is of interest to observe that with
measured pressures, the agreement between theory and experiment is, indeed,
improved near the nose where the effects of bluntness on pressures are most
important. On the windward ray, ¢ = 180°, the differences shown between
theory and experiment for R/ry, = 0.183 at large x/R are attributed to afore-
mentioned boundary- and entropy-layer interactions.

Surface streamlines.- A comparison of experimental surface streamlines,
as indicated by oil streaks, with inviscid theory is shown in figure 11. Here
the surface oil streaks have been unwrapped from the cone surface so that
guantitative comparisons between experiment and theory can be made. It is
tacitly assumed that. the oil streaks show the direction of the limiting stream-
lines at the surface. Theoretical Newtonian streamlines for the blunted cones,
shown by solid curves, were predicted by equation (AL4) for arbitrary values of
¢@. while those for the sharp cone were faired from isoclines computed by
equation (Bl3) for arbitrary values of ¢y. Comparisons are also made in fig-
ure 11(c) for o = 10° and R/r, = O and 0.167 with surface streamlines computed
by the inviscid three-dimensional characteristics procedure given in refer-
ence 6. Streamlines for R/rp = 0.167 were forced to cross those predicted
by equation (AL) at x/r = 15; the sharp cone, crossover point was at the base,
xg/L = 1. While the oil streaks clearly indicate streamlines on the windward
surface, details of the flow on the lee side are lacking. Apparently, shear-
ing stresses were so small on the lee side, where the pressures were lower,
that streaks did not form. Therefore, it is believed that termination of
streaks on the lee side is not from flow separation and this is corroborated
by the heating-rate measurements. However, for R/rb = 0.0625, figures 11(a)
and 11(e) do show some flow details for ¢ = 0° that apparently resulted
from turbulence.

From figure 11(c) it can be seen that inviscid streamlines predicted by
Newtonian theory agree well with the characteristic solution for the sharp
cone but underpredict the crossflow angle, ¥, for the blunt cone. It is
clear from the blunt-cone comparison that the estimates of heating rates,
using equation (Ah) for streamline geometry, were made along somewhat shorter
paths than would have been the case had characteristics theory been used.
This applies mainly for ¢; near 90°, however, and not for streamlines nearer
the stagnation line where streamlines are fairly well predicted. Also, in view

11



of the close predictions shown for the sharp cone, it appears that estimates
of streamline geometry using equation (Ah) would improve as bluntness is

decreased.

It is of interest to observe from the experimental oil streaks the
progressively steeper crossflow angles, ¥, that result from increasing blunt-
ness for ¢ near 90° and a > 0°. From the characteristic solutions shown in
figure 11(c) it is apparent that because of bluntness, inviscid streamlines
are inclined at greater ¥ than those for the sharp cone. Nevertheless, the
angular difference between the oil streaks and the characteristic streamlines
is clearly greater for the blunt cone than for the sharp cone. As shown in
reference 6, differences between the limiting surface streamlines, as indicated
by the oil streaks, and inviscid characteristic streamlines can be accounted
for by three-dimensional boundary-layer theory of reference 17.

CONCLUDING REMARKS

Heating rates and surface streamlines from wind-tunnel tests of a 15°
semiapex cone at a Mach number of 10.6 are presented. Effects of angle of
attack and nose bluntness on heating rates are demonstrated for free-stream
unit Reynolds numbers of 0.1x108, 1.2x10%, and 1.8x10® per foot. While, in
general the heating rates conform to the main aspects of laminar boundary-
layer similarity theory, differences are noted at angle of attack that appear
to depend on model scale.

For o = 0°, increasing bluntness decreases the laminar heating rates
and prevents the onset of transition over the afterpart of the model. Increas-
ing bluntness is effective also in preventing transition and turbulent flow
that occurs on the lee side of the sharp cone with increasing angle of attack.
On the windward side, the flat-plate type distributions of heating rates that
characterize laminar boundary layers are distorted by increasing bluntness.
For the bluntest model, the heating-rate distributions develop minima and
maxima that appear related to the pressure distributions.

For o = Oo, good agreement of heating rates with sharp- and blunt-cone
theories is shown. Comparisons for o > O° demonstrate the general sultability
of similarity theory for estimating heating rates on blunt cones. Although
comparisons of surface~-flow streamlines with inviscid theory show that blunt-
ness significantly affects boundary-layer crossflow, the effects of
crossflow on heating rates appear small.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, June 11, 1969
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APPENDIX A
PROCEDURE FOR ESTIMATING BLUNT-CONE HEATING RATE FOR « > O°

Theoretical heating-rate distributions of the present investigation for
a > 0° were calculated by the method given in reference 5. Using Newtonian
theory, reference 5 derives equations for streamlines and scale factors of the
axisymmetric analog that are required for the heating-rate estimates. Since
the equations in reference 5 are derived in general form, the purpose of this
appendix is to give the specific procedure used for present heating-rate
estimates. The procedure and equations given apply only to spherically
blunted cones.

STREAMLINE GECOMETRY

As shown in sketch (c¢), streamlines on the nose follow great circles
beginning at the stagnation point and crossing the sphere-cone tangent point

., S Streamline

: el

// Xo Wind axis
t
; S

e, X Body axis

Sphere cone tangency

Sketeh (c).

at an angle ®;. The local radius normal to the wind axis to an arbitrary
point on a streamline is given by

13



To
& = sin A (A1)
where A = (S/R). The body axis coordinate of a point on a streamline is
given by

" (1 - cos ©)®
- : —- (a2)
1 - sin A (cot A cos a - sin o cos 1)
Values of A at the sphere-cone tangent point can be estimated from
1
sin Ay = cos © [(cos a cos @4 + tan © sin @)? + sin® @%] (A3)
For the conical surface, streamlines and scale factors of the
axisymmetric analog (vef. 5) are given by equations (AL) and (AS5),
respectively.
sin & cos B
T . 2
tan @, /2 tan o sin o, \ °F% °
Z = cos B — —t (Ak)
R tan @/2 sin o
1/2
sin® 5 + (cos ®; cos a + tan & sin o)
- (85)

0|

_r (sin ) > _ N
R \sin @3 sin® @ + (cos @ cos o + tan & sin «)?

The distance along a streamline is derived in appendix B and can be found by
evaluating

= r
= Ny + cos d tan o sin @ 7 aop (A6)

£

1 [cos 8 + tan o sin & cos @] 2)1/2
1+

0

The body axis coordinate is given by

1k



X T 1l - sin &
2 - === 5 A
R <R cos O >COt6 (7)

HEATING-RATE DISTRIBUTIONS

In essence, heating rates were evaluated by equation (2) with
ggv./g;_o = 1 and with an assumed isentropic expansion of the local flow from
the stagnation point. Over the spherical nose, the appropriate substitution
in equation (2) for r/R is r, /R and over the conical surface, h/R. Sub-
stituting (A1) and (A5) in equation (2) gl/g! = 1 yields respectively for
o
the spherical nose, 0 < (r/R) < (1 - sin 3)

a (1/2) F sin A
—_ = = A8
= ) e (A8)
Gy f F sin® A\ a\
o)
and for the conical surface, (x/R) > (1 - sin )
lpfh
. 7 (5)
e oo e = - o oo R —
%o M P z |2
L N2 cos &+ tan a sin & cos @\
Cs F sin® N\ d\ +cos ® F(}.—{) =l - - S
o o tan o sin @ J
(29)
where F 1is given by
/2
-1
o o\ -1/y
F=—]|1-{(— Al10
o - (a10)

and where, in the denominator of the right side of equation (A9), the
integration along streamlines has been transformed by equation (BlE) to an

15



integration over the independent variable, ¢. Pressures used in

equation (AlO) were obtained experimentally (see ref. 10) and were also cal-
culated from modifications to Newtonian theory. For the latter case,
pressures over the nose were estimated by

2
2
D Cpo cos< A + 7M&?
— = (A11).
Py 5
Cp + >
(o] 7M°o
and over the conical surface by
c sin® w - 2
D Pgy sin2 (o + 3) = M 2
— = (A12)
1Y 2
o) Cp + )
e} TM,
where
sin w = sin ® cos o - cos & sin a cos @ (A13)

The stagnation-point pressure coefficient, Cpo, was computed from the normal
shock relation for air while Cp was estimated by tangent-cone theory.
s

Stagnation-point velocity gradient was evaluated from a blunt-body solution of
the flow by the inverse method of reference 15.

16



APPENDIX B
DERIVATION OF STREAMIINE LENGTH AND CROSSFLOW ANGLE

Equations are derived for the length of streamlines and the angle of
streamlines to cone elements for Newtonian flow over spherically blunted
cones.

STREAMLINE LENGTH

The general expression for arc length of a curve in rectangular

coordinates is
~ dy 2 az 2] 1/2
s_f[1+<dx) +<dx> ] dx (B1)

Since streamlines lie on the conical surface, it is expedient to transform
equation (Bl) to cylindrical coordinates as follows:

X =1 cot d (B2)
vy =1 sin @ (B3)
Z = T cos @ (B4)
For constant B,

Gz _dzar_ (. .o

i " ar ax = ( r sin @ 7=+ cos $> tan & (B5)

dy dy dr do .

= ara <r cos 7= + sin @ tan & (B6)

From the substitution of equations (B5) and (B6) in (Bl), it follows that on

the conical surface
4 27 1/2
s =f|—F— =+ 22 (a$> ] dr (B7)
sin? & r

7



By differentiation of equation (AL) it can be shown that

tan® o sin® P
2 (A9 _ _

(sin & cos ® + tan a sin® & cos o)

and

sin ® cos ® + tan o sin® & cos o
dr = -1 - dep (B9)
tan o sin Q@

Substituting (B8) and (B9) in (B7) gives for the streamline length including
the nose

o P1 cos & + tan a sin & cos Q\2|¥/2
==\, + 1+ : : ' Z ap (B10)
R i R R
tan o sin O
®
where r/R is given by equation (A4) as a function of Q.
CROSSFLOW ANGLE
From sketch (d) it can be seen that
xr
R
sin ¥ = -r %%-= —— (B11)
) [d 5 R)]
do
Differentiating equation (B10O) gives
cos d + tan o sin ® cos @ 2|1/2
- gﬁ_S_Ll:_ 1 + Ee (B:|_2)
do R

tan o sin @

18




Sketch (d)

Substituting equation (B12) in equation (Bll) yields

sin ¥ = — : L (B13)

cos ® + tan o sin & cos @\ 2| V2
1+ |—
tan o sin @

Since (B13) is independent of the nose radius, it is evident that it applies
to sharp cones as well as blunt.

19
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TABLE I.- VALUES OF q/d, FOR R/ry =
(2) Rex = 0.4x108 per foot, g, = 11.2 Btu/sq ft sec

0

a = o°
¢, deg xg/L )
0.207 |0.250 [0.293 |0.380 |0.466 | 0.552 | 0.638 |0.724 | 0.811 [0.897
0 10.112 | 0.0868{0.0816] 0.0747]0.0687] 0.0651} 0.0625|0.0618| 0.0575[0.0515
a = 5° _
0 | .0596] .0510] .OLk76f .0383| .0375| .0341| .0298f .0281| .0281]| .0341
90 | .103 | .0962| .0919| .0851} ---| .O0724 .066L[ ---| .0570| .0527
180 | .159 | .1k5 | .132 | .121 | .108 -—- | .0945| .0877| .0792| .0766
o = 10° ]
0| .0312 .0232f .0152| ---| .0125| .0lo7| .0089| .0071f .0071| .0089
90 | .0999| .o9Lhl .0892] .0821 --- .0705| .0634] --- .05LkL] .0LB2
180 | .20k | .185 | .170 | .154 | .139 ---| .121 | .11} .101 | .0937
o = 15° 7 |
o | .o181f .0136| .0091| =---| .0109| .0094 .0089| .0136| .0136] .0091
90 | .101{ .0951| .0888f .0816} --- L0661 .0607 --- | .052L4} .0L53
180 | .255 | .232 | .210{ .190 | .172 ---| .150 | .138 | .127 | .127
a = 20° 7 7
0 | .0160| .0133} .0088f --- | .01lk2] .0168| .0129| .0088| .0088| .0178
90 | .0975| .090L| .0833| .0762| --- | .0621| .0563f ---] .0501} .0L88
180 | .290 | .26L | .238 | .216 | .186 --—- | .168 152 | .137 .133
(b) Rey = 1.2¢10° per foot, §, = 19.0 Btu/sq ft sec
a = O°
®, deg XS/L
0.207 10.250 }0.293 [0.380 |0.466 [0.552 |0.638 |0.724 |0.811 |0.897
0 |o.124 f0.110 {0.108 |0.100 [0.0811|0.0832{0.0826]0.0848]0.0887|0.0963
a = 5°
0 L0641 .0561| .0507| .0L81}| .o45h4| .0547) .0668] .0817| .0950| .107
15 | .0698| .0620| .0568| .0517| .ok65| .oko8| .0522| .0661] .0762] .0894
30 | .0808| .o7o7| .0656| .0596| .0505| .OUB6{ .0520| .0556| .0606| .0682
45 | .0865| .0778| .o7L6| .06L9| .0541f .0L92| .05L0| .0568| .0622| .065k4
60 | .0999} .0917| .0872| .0765| .0612| .0580| .0558| .0586| .0586| .0612
75 | .116 | .102 | .0980f .0870| .0733| .0594] .0615| .0678| .0678| .0708
90 | .116 | .107 | .10k | .0982| --- | .0789| .O774| ---| .O7k7| .O7Ly
105 { .143 | .138 | .119 | .115 | .100 | .09L4o| .0910| .0885| .085L| .0925
120 | .153 | .17 | .130 | .120 | .109 | .0999| .0978| .0923| .0897 | .0943
135 | .162 | .1L8 136 | .121 | .110 | .1l02 .0963| .0930] .0897 | .0920
150 | .179 | .163 | .lb7 [ .135 | .121 --- | .111 | .104 | .0960] .101
165 | .177 | .161 | .145 | .133 | .119 --- | .109 | .103 | .100 | .103
180 | .178 | .162 | .157 | .13h | .126 | =--- | .112 | .10k | .0986]| .107
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105
120
135
150
165

180

15
30

60
75
90
105
120
135
150
165
180

0.207

0.0255
.0340
.0483
.06LL
.0782
.099L
.12k
.155
.186
.206
226
.235
249

L0154
.0203
.0306
.OL57
L0641
L0788
117
-155
21k

.237

:296
.299

.0213
.0130
.0200
.0307
.0k79
0797
L1k
77
.220
275
.319
.346
.3k

TABLE I.- VALUES
(b) Reg = 1.2x108 per foot,

0.250

0.0226
.0275
.0L57
.0537
L0638
.0917
.110
.13
.169
.187
.201
21k
.226

.0102
.0179
.0267
.0355
.0591
.0695
.105
.138
.191
216
.245
.265

272

.0186
L0104
.0175
.0212
.oLLh
.0698
.101
.159
.200
.250
.286
.323
.326

0.293

0.0170
.0225
.ol11
.0483
.0652
.0862
.108
.12k
A2
.168
.18)
.193
.20L

.0102
.0153
.0232
.0330
.0532
.0666
-0999

172
.190
.216
234
2k

.0186
L0104
.0150
.0212
.0Lok
.0659
.0971
.132
A7k
.220
.255
.281
.282

0.380

0.0142
.0225
.0356
.0429
0579
071k
.100
.118
.138
-153
.169
A7k
.186

.0102

.0127

.0207
0294

.0468
.0598
.0922
.116
-159
176
.199
.213
221

.0186
.0063
.0100
.0186
.0328
L0574
.0881
.130
.165
.20k
.233
.255
.260

OF q/§, FOR R/ry, = 0
d, = 19.0 Btu/sq ft sec - Concluded

o = 10°
xg/L
.L66 0.552
.0186]0.0226
.0210] .0215
.0310} .0270
.0386| .03L46
.0459] .0500
.0596] .0505
——— .0833
.10k | .0958
Jd2h | .113
.137 .125
.155 -—-
.158 -
.170 -—
a = 15°
.01591 .0182
.0092( .0082
.0179f .0150
.0203| .0205
.ohoL} .0311
L0431 .0390
-== 4 0779
1ok | L0960
.143 .131
. 157 -—-
179 ---
.19k -—-
.197 -——
a = 20°
024} o242
.0083| .0079
.0080| .0070
.0166{ .01Lo
.0272| .0230
.0436] .0356
- .0738
117 .106
L1148 | .137
.187 -—-
.215 -—
234 -—-
234 -—=

0.638

0.0315
.0195
.0260
.0332
.ohl6
.0h86
.0792
.0928
.110
.119
-133
.136
J1hy

.0106
.0061
L0145
.0197
L0276
.0376
.0717
.0921
.126
.138
-157
.170
L7k

.0236
.0076
.0060
.0110
L0196
.0325
.0680
.103
.132
.162
.188
.203
.202

0.724 ]0.811 J0.897

0.0385{0.0476]0.0510
.02251 .0250| .0250
L0264} .0290] .025L4
.0327] .03L9| .0327
.0433) .0o433] .0o428
.0568] .0510] .o48L
--- | .0679] .0623
.0872] .0815| .0815
.102 | .0980| .09L4kL
J111 | .105 | .103
Jd24 | .11y 117
.128 121 | .116
2136 | .130 | .12y
.0118| .0118| .0133
.0051| .00L40| .0061
L0128 .0153] .01h48
L0244 .0203}1 .0203
.0330| .0301| .0306
.0LO1| .0hOol| .0367
-~~ | .0620{ .0563
.0842! 0784 .078L
.118 .108 .109
128 | 119 | 122
.1hy .138 | .136
.158 .151 L1ly
164 | L1h9 | 146
.02871( .0287} .0276
L0042 .ook2f .0052
.0050| .0030| .0050
.0131| .0131} .0100
.0237| .0237| .0202
.0376] .03Lk7| .0347
--- | .0600]| .0557
.0931{ .0861| .0842
.120 | .113 | .116
2151 | .1hk2 | .1h1
175 | .165 | .163
.193 | .182 | .179
188 | .175 | .173
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TABLE I.- VALUES OF q/d, FOR R/r, = O - Concluded
(¢) ReX = 1.8x10%° per foot, i, = 22.9 Btu/sq ft sec

a = 0°
©, deg ) XS/L
0.207 |0.250 [0.293 |0.380 |0.466 [0.552 |0.638 [0.72k4
0 |0.134 J0.121 |0.117 ]0.109 |0.0888]0.0920]0.0980}0.0985
} @ = 5°
o | .0624| .0559| .0516| .ok73| .0594| .o79k| .0972| .12k
9 | .122 | .112 | .110 | .100 | .o7k2| .0860| .0860[ ~---
180 | .185 169 | .157 .14h3 127 - .120 | .116
a = 10077 7
o | .0278| .o2uk| .o222] .0171| .0205| .0313| .0kO5| .0556
90 | .122 | .113 | .111 | .103 | .0786} .0829{ .0786| ---
180 | .2k | .220 | .203 | .184 | .167 --- ] .145 | .137
a = lSO
o| .o213| .0197| .0164| .0135| .0184| .0181| ~--- [ .0205
9 | .121 | .111 | .107 | .0964| .0780| .0796{ .0763| ~---
180 | .31k | 285 | .25k | .28 | 206 | --- | .180 | .170
a = 20°
o | .0338] .0206] .0253| .0295| .0279| .0278| --- | .0296
90 | .116 | .103 | .100 | .0912| .0658| .07k3| .0692| ~--
180 | .358 | .325 | .291 | .26k | .236 --- | .207 | .194

2k

0.811
0.115

.134
.0903
112

.0628

.0718
.128

.0205

.0657
.160

.0296
.0608
.186

897
.129

.138
L0946
.129

.06k1

0727
.128

.0205 |

.0595
.160

.0253
.0549
.182




105

135
150
165
180

TABLE IT.- VALUES OF q/§, FOR R/ry, = 0.0625
(a) Rek = 0.4x108 per foot, §, = 11.2 Btu/sq £t sec

o = O°

xg/L

0.207 |0.250 |0.293 |0.380 |0.466 |0.552 [0.638 |o.724 [0.811 [0.897
0.0998|0.0918]0.c897| --- |0.0738]0.0656|0.0630]0.0639|0.0618]0.05k9
(v) ReX = 1.2¢10% per foot, d, = 19.0 Btu/sq ft sec

. Q = o°

0.207 {0.250 |0.293 ]0.380 [0.466 |0.552 |0.638 |o.724 {0.811 10.897

0.116 |0.105 [0.105 |0.0977|0.0844}0.0712{0.0712|0.0758{0.0737]0.0763

a = 50
L0508} .oLki7| .0356| .0254| .0203| .oiLk2| .0183| .0183| .01k2| .0203
.04831 .oLk11l] .o411l| .031k4| .0257) .0234| .0203| .0249} .0249] .0257
.0548| .oLkh3| .ok18| .0391} .0387| .0397| .0394] .0L59| .0L59{ .OLA3
.0729] .0680| .0640| .0591] .0601} .0560| .0531| .0581} .0566| .0566
.080k4| .o716| .o716| .0716| .0685| .0605| .0582| .062L| .0588| .0567
.0960| .0909| .088L{ .088%4] .0803| .0690| .0663} .0687| .0641| .0606
12 | .107 116 | .110 --- | .0904]| .0838| --- | .O7k7| .0732
.138 .136 127 121 .107 L0985 .0934f .0798[ .0858] .0838
150 | 149 | .132 | .125 | .112 | .10k | .0990| .0861| .0933| .0959
2190 | .165 | .152 | .137 .121 --- | .108 | .0960| .100 { .101
A71 | 166 | 146 | 134k | .120 | .108 .106 | .0929] .100 | .0965
188 | .173 | .152 | .139 | .12Lk | .113 L110 | 101 | .106 | .106
2195 | .183 | .158 | .1i43 | .131 == 1 .118 | .112 | .110 | .112
a = 10° B

.02171 .0181| .0155f .0119} .0139| .0139| .011h4| .0300| .0300{ .0361
.0255| .0188| .0162| .0121| .0107| .0082| .0091| .olo7| .0l07| .01l62
.0358| .0332| .0317]| .0300{ .0281} .0303| .0273| .0358| .0358| .0307
.0482| .ohk2| .ohk2y .okl2| .0397| .0381| .0367] .0LO9| .0357| .0301
.0740| .0709( .0678| .0626{ .0594{ .0507| .O4OL4| .04OO| .OL59| .OLLB
.090ki .0826] .0881| .0883| .0657| .0552f .0512{ .0554| .0524] .0513
.119 | .113 | .113 | .102 -=- | .0821] .0770| =--- | .0703] .0692
.159 | .153 | .134 | .123 | .12k | .101 | .0962| .0822) .0852| .0822
20Lh | .192 | .16 | 152 | .135 | 123 | .19 | .105 | .105 | .1l02
222 | L202 | J177 163 | .1bs -=- | .128 | .108 | .112 | .l08
2k | 220 | 195 | 176 | .158 | .145 | 139 | .120 | .126 | .115
.237 .218 | .189 | .17k | .158 | .143 | .1LkOo | .118 | .125 -——-
.250 | .227 2199 | .179 | 165 | .151 | .1hk5 | .135 | 126 | .12k
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TABLE II.- VALUES OF q/d, FOR R/ry, = 0.0625 - Continued

(b) Res = 1.2x10%® per foot, qo = 19.0 Btu/sq ft sec - Concluded
] “ - }50 : S T
P, deg - XS/'L "
0.207 {0.250 |0.293 |0.380 |0.L466 |0.552
0 [0.0172]0.0172|0.019710.029610.0325 |0.0349
15 | .0203} .01l77| .Olk7| .0l02| .0076| .0OTT
30 | .0298| .02L8| .0224| .0199| .0159| .0157
45 | .0377| .0351| .0327| .0311{ .0276! .0279
60 | .0596] .05u48| .0527| .0489| .0388} .0322
75 | .0826] .o0773| .0773] .0610| .0526| .0L6E5
90 | .131 | .120 | .116 | .100 --- | .0818
105 | .169 | .15L | .133 | .125 | .109 | .100
120 | .210 | .190 | .169 | .155 | .136 | .l1l2L
135 | .24y .230 | .198 | .183 .163 -—
150 | .288 262 | 224 | 206 | .185 .169
165 | .287 -—= | .254 | .218 --- | .178
180 | .308 | .288 | .251 | .227 | .202 | .180 |
I - - - . =200 -
0 | .0250| .o3Lo} .oL51| .obk51) .0391| .0380
15 | .0223} .0136| .0163| .0109| .0120| .0130
30 | .0172| .0olk7| .0128| .0098| .0078| .0087
45 | L0265 .0265( .0245) .0235] .0177| .OL17k
60 | .0522| .ok75| .o4Lk3| .0365| .0300| .025k4
75 | .0828} .0728{ .0702| .0597 | .0Lk50| .0379
9 | .126 | .111 | .lo7 | .09k2| --- | .O761
105 | .180 | .164 | .1Lh1 | .128 | .115 | .10k
120 { .230 | .209 | .177 | .16k | .150 | .136
135 | .286 | .262 | .228 | .206 | .184 -
150 | .331 | .310 | .260 | .236 | .218 .198
165 .338 -—= | .299 | .259 - 213
180 | .377 f3&3 -290 .269 .238 » .21k
(c) Reg = l.8}<_lO6 per foot, § = 22
. o= 07
L
P, deg — *s/
0.207 [0.250 {0.293 [0.380 [0.466 [0.552
0 [0.118 |0.11k ]0.110 |0.106 [0.0957 |0.0820
0 Ohl7 ] .0532) .0371! .0250| .0205{| .02091{ .
90 | .119 | .115 | .11k | .111 --- | .09k7
180 | .205 | .190 | .169 | .153 | .135 | .12k

26

0.638 (0.724 |0.811 [0.897
0.0276[0.0414]|0.0364]0.0394
.0104| .0050( .0050| .0076
.0169| .0Ol7L| .Ol7k| .01L9
L0220 .0231| .0211{ .0201
.02721 .0340| .031L4| .0308
L0396} .oLkk7| .okOO| .0368
L0759 --- | .06L41| .0616
.0936| .0768| .0789| .0726
.118 | .100 | .100 | .0957
L1143 | L1211 | .l2h | .115
.161 | .1ho | .143 | .132
.166 | .153 | .145 | .135
Iy | W163 | .153 | ---
.0304{ .0381] .0350| .0326
.0159] .0065| .0065| .0087
.0072| .0088| .0059] .0049
.0131| .0lk2| .0137] .0123
L0222 .0245] .0224| .0209
.0331] .0388| .0356] .0315
.0711| --- | .061l1| .0601
.101 | .0812f .0851| .0786
.132 { .108 | .11k | .105
J161 | 137 | .141 | .130
.189 | .16Lk | .16L | .156
2199 | 184 | 177 | .167
.206 | .193 | .181 ---
.9 Btu/sq ft sec
0.638 Jo.724 |0.811 [0.897
0.0764[0.07870.0836]0.0843
0221{ .0189| .0189| .o2h2
0877 --- | L0798 .0786
.119 | .116 | .11k | .0987




TABLE IT.- VALUES OF gq/d, FOR R/ry = 0.0625 - Concluded
(¢) Rey = 1.8x10% per foot, 4, = 22.9 Btu/sq ft sec - Concluded

_ o = 10°
XS/L
¢, deg ' P — - - =
B 0.207 {0.250 [0.293 |0.380 |0.466 [0.552 [0.638 |0.724 [0.811 |0.897
0 ]0.0223{0.0142{0.01420.0142]0.0194|0.0246]| --- |0.0357 [0.0377|0.0406
90 | .128 | .124 | .124 | .110 == | .0884| .0831| ---] .o762| .0779
180 | .265 | .237 | .215 | .195 | .173 | .155 | .150 | .1hk2 | .i34 | .13k
7 _ a = 15°
0 | .0153f{ .0185| .02h2| .0342| .04O3| 0453 --~| .O46L| .OL8L| .0Lh3
90 | .1hkh [ 121 | .116 | .102 --- | 0816 .o0770 ---| .0681| .0665
180 | .324 | .297 | .256 | .208 | .206 | .181 | .l77 167 | 157 | .158
o = 20°
0 L0281 .0346] .0L82] .0523| .oLL6| .039L| --- L0394} .0346| .0302
90 | .132 | .117 { .111 | .0973| .o772| .0792] .Oo7hO| --- | .0639| .0603
| 180 .380 .358 .306 275 .24y .220 .215 .201 | .191 -




TABLE IIT.- VALUES OF g¢/§, FOR R/rp = 0.183
(a) Rey = 0.4x10° per foot, §, = 11.2 Btu/sq £t sec

0.811
0.0581 |

0.811
0.0516

0168
0512
.0840

.0125
.0527

.0242

.13k

.0175
.0167
.0239
.0315
.0k17
L0562
.0699
.0709
.0885
.0916
.0922
.0937

a= o°
L
P, deg o/l -

0.207 |0.250 [0.293 [0.380 |0.466 [0.552 |0.638 |o.72k
0 |0.10k J0.0845[0.0704|0.0610| =--- [0.0563{0.0518[0.0516

, o= 57 L
0| .084k0| .o7L8| .0654| .0560[ .0280| .0280| .0234| .0186
90 | .0934| .0794| .0700| .0560| --- | .051Lk| .051k{ .0513
180 | .131 | .112 | .0934| .08k0| --- | .0934| .0888| .0840
_____ _ = 159 5

0| .o430| .0302| .0215} .0156| .0063| .0078| .0098 | .0107
90 | .115 | .o7k2| .0655| .0655| --- | .0669| .0689| .0537
180 - - TTT R I o -TT T
0| .0281} .0191| .0135| .0078| .0056] .0158] .0205| .0242
90 --- --- -~- -—-1 --- --- --- ---
180 | .225 | .238 .236 | .21khk | .187 .173 .155 —_—
(b) Reg = 1.2x10% per foot, §, = 19.0 Btu/sq ft sec

, ° e -
xg/L
CP, deg O : T Ty T o R

0.207 }0.250 [0.293 [0.380 {0.466 |0.552 |0.638 [0.724

0 |0.122 0.0968 0.0775 0.0692| -=- ]0.0664[0.0636 |0.0581

, , o @=5

0| .0958] .o72h4] .05L9| .O459| --- | .0299] .0200 | .0200
15 | .0865| .0664| .0508| .ok2h} -~~ | .0290| .0248 | .0212
30 | .0911{ .0694| .0579| .O43L| --- | .0326] .0290 | .0277
45 1 .0959| .orke} .0553| .ou82| --- | .0379| .0358 | .0348
60 | .10k | .0814{ .0625{ .0539| =--- | .OL7O| .OLL5 [ .OkLS
75 | .112 | .0888| .0699| .0612| --- | .0562| .0562 | .0592
90 | .120 | .0898{ .0799} .0699] .0699| .0698| .0698 | .0699
105 | .114 | .0921| .0781} .0725| -=-- | .O71L| .O71h4 ]| .0670
120 | .137 | .117 | .10k | .0977 | .0936| .0992| .0936| ~=--
135 | .140 | .129 | .107 | .103 | .101 | .107 L0992 | ~--
150 | .141 | .119 | .108 { .108 | .106 | .108 | .103 -
165 | .141 | .120 | .113 | .110 | .111 | .109 | .105 ---
180 | .156 | .132 | .120 | .120 | .120 | .125 | .115 | .115
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0.897
0.0516

0168
.0L67
.0838

sl
.0517

>.025§

13k

[o-897 |

0.055k4]

.0125
.0112
L0271
L0271
.0h58
.0602
.0699
L0686
.0916
0975
.0922
.09L9
105




TABLE III.- VALUES OF q/§, FOR R/ry, = 0.183 - Continued
(b) Rey, = 1.2x10° per foot, §, = 19.0 Btu/sq £t sec - Concluded

a = 10°
P, degl . Xg/L
0.207 |0.250 [0.293 [0.380 [0.466 |0.552 |0.638 lo.724 |0.811 |0.897
0 |0.0664]0.0487(0.0338 |0.024810.0166{0.0122 |0.012210.0122|0.0122{0.0138
15 | .0661| .0Lk99| .0358| .0257| --- | .01h41} .0119{ .0l00| .0076} .0108
30 | .o712| .o5h40| .0393| .0289] --- | .0200| .0189| .0135| .Ol77| .07k
45 | .0798| .0611| .0454 ] .0373| --- | .0284| .0272| .0272| .0247| .0252
60 | .0899| .0688| .0528 | .ok2h! --- | .037L4| .0374| .0374| .O347| .0LO2
75 | .10L | .081k4| .0643| .0575] --- | .05k2| .o5L2| .0573| .0548} .0552
90 | .111 | .0802} .o776| .0776] .0693| .0693| .0693| .0720| .0720| .0665
105 | .127 | .106 | .0921| .0921| --- | .0932{ .0921| .0813j .08L45| .0796
120 | .158 | .136 | .132 | .132 | .130 { .130 | .118 -—= ] .113 | .116
135 | W77 | .156 | .1lh7 | .161 | .151 | .1Lh | .129 --- | .116 | .121
150 | .189 | .iy2 | .167 | .178 | .166 | .155 | .1lho ---1 135 | .142
165 | 195 | 174 | .170 | .184 | .170 | .155 | .137 --= | .133 | .11
180 | .189 | .177 | .77 | -183 | .166 | .155 | .1k | .1h4 | .1hh | 149
@ = 15°
0 | .0500{ .0337| .0258] .0158| .0110| .0110{ .0095| .0158| .0205| .0316
15 | .0455| .0322( .0222| .0133] ~--- | .0061| .0050| .0050{ .0050{ .0050
30 | .0509] .0373| .0265| .0163| ~--- | .OL4l) .0119| .0098| .0073| .0070
L5 | .0629| .0o485| .0348| .0258| --- | .0223| .0198| .0189| .oly7| .0202
60 | .0699| .0543| .0Lk09| .0311| --- | .0298| .0289) .0306f .0271| .0273
75 | .0906| .0710| .0546( .0491{ ~--- | .0502| .0513| .0535| .OL59| .0u37
90 | .116 | .0894| .0726] .0726f .0685| .071il| .O71ll| .0621| .0621} .0631
105 | .122 | .0999| .0888 | .09uk| --- | .09u9} .0888| --- | .0810( .0810
120 | .164 | .1h7 L1h7 L156 | .1h3 129 | .116 -— .118 .126
135 | .210 | .194 { .189 | .202 | .177 | .166 | .148 --= 1 145 | .152
150 | .222 | .21k | .21 | .21k | .188 | .17k | .158 ---{ .154 | .162
165 | .219 | .211 | .211 | .21k | .188 | .175 | .16k4 -—= | 171 | .178
180 | .250 | .27 | .2k7 | .2k2 | .208 | .197 | .192 | .187 | .179 | .18k
o = 20°
0 { .0368| .0250| .0153| .0102| .0102| .0215| .0296]| .0358{ .0LO9| .0LO9
15 | .03L49| .o2Lko| .016L} .0087| ~--- | .0115| .0131| .0131] .0104| .0109
30 | .0k23| .0302| .0207 | .0126| ~--- | .0058| .0O48| .oOk2| .0036{ .0035
45 | .0511| .0386| .0270| .0215| --- | .0155] .01L45| .0135| .0120{ .0150
60 | .o6k2| .0LB9} .03L6 | .02851 --- | .0280| .0280| .02801 .0233| .0255
75 | .0833| .0634| .0L82| .0450] --- | .0508( .Ok77| .0L56] .0381| .ok25
90 | .111 | .0868| .0766 | .0766| .O7hl| .0664| .0613| .0587| .0587( .0608
105 | .134 | .110 | .104 | .109 --- | .100 | .0922| ---| .0867| .0867
120 | .198 | .17h4 | .17h | .186 | .161 | .150 | .13k --- | .128 | .132
135 .238 .233 .233 .230 .197 .187 .169 - .159 .160
150 | 277 | w217 | 277 | 260 | .22h | .211 | .191 --—- | .176 | .181
165 | 278 | .289 | .300 | .265 | .228 | .218 | .200 --- | .191 | .191
180 | .296 | .306 | .306 | .276 | .240 | .230 | .217 .209 | .20L | .199
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TABLE IIT.- VALUES OF q/§, FOR R/rp = 0.183 - Concluded
(e) Re; = 1.8x10% per foot, d, = 22.9 Btu/sq ft sec

30

®, 928l 207 [0.250 0.293
0 |0.122 |0.101 {0.0859
o .o971] .o709| .0569
90 | .122 | .0962( .0831
180 | .166 | .1h9 | .131
o | .o736] .osu1] .0359|
90 | .121 | .0909| .0779
180 | .2o7 | .190 | .184
o | .oss| .o3kr| .0239]
90 .115 L0898 | .0737
180 | .251 | .23 | .238
0] .0338] .o211] .o211
90 | .11k | .0908| .0761
180 .394 313 | 317

0.380
0.0752

.oub7A
.0700
131

0260
.07 Lk
199

o171
0737
23k

o211
.0761

a = O°
XS/L
0.466 |0.552
--=- |0.0646
«=5
- | .0263
-=- | .0612
--= | 131 |
=100
--~ | .0108
--- | 071k
"}%KL;W3
=157
--= | .0096
--~ | .0750
-210 | .205
a = 20°
-—~ | .0253
--- | .0761
27 | .2hk3

+287

0.638
0.0645

.0219
L0612
.122

071k
-165

.0130

.0750
199

0296
.C697
+239

.OO95M

0.724
0.0645

.0184
.0612
W11k

.0078
.0693
L7k

L0156

L0650
-215

.0380
L0655
239

0611
00615

.018L
L0634
L11h

.0065

L0779
.182

.0217
L0681
.221

L0423
L0656

239

.897
.0601

.0153
.0678
L11h

.0065

L0758
.18%

.0217

.0693
.230

.03
.0710
213




(b) R/ry = 0.183

Figure 1.- Model mounted on the quick insert device in the 3-1/2 foot
hypersonic wind tunnel.
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All dimensions in inches

Yvyvy

Base plate

x/R

(R/rp=0.183)

19.24
- 19.51
—— 21.32
- L=22.39
Thermocouple positions
xg/L (R/r,=0) x/R (R/r,=0.0625)
0.207 9.49
.250 12.07
.293 14.64
.380 19.81
.466 24.95
.552 30.12
.638 35.27
724 40.40
811 45.57
.897 50.70

.35
2.23
3.10
4.86
6.62
8.37
10.13
11.89
13.64
15.40

Figure 2.- Details of model with alternate tips.
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o 0 ¢ 15
A 5 v 20
o |0

.xS/L xs/L )

(a) R/rb =0

Figure 3.- Experimental heating-rate distributions of the 15° conical model;
M_ = 10.6, Re* = 1,2x10% per foot.
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Figure 3.- Continued.
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(c) R/t = 0.183

Figure 3.- Concluded.
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400~ R/rp=0  R/ry=0.0625 " R/rp=0.183

300¢ -
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,deg
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A A 5
| O 10
¢ O )
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= - v Vv 20
008 — : Solid symbols = leeward
006 — __ Open symbols @ windward
| | I I N I I Ll L LtI
04
° 2 S 4 6 B8 1.0 .2 3 .4 6 810 .2 S 4 6 B8 1.0
xg/L

(a) Re* = 0.4x10° per foot.

Figure 4.- Effects of bluntness and angle of attack on heating-rate distributions for
¢ = 0° and 180°; M_ = 10.6.
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(b) Re* = 1.2x10°® per foot.

Figure 4.- Continued.
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(c) Re* = 1.8x108 per foot.

Figure 4.- Concluded.
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(a) Sharp cone, R/rb = 0.

5.- Effect of angle of attack on Reynolds number for transition.
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(b) Blunted cones.

Figure 5.- Concluded.



Theory
O Experiment
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) With entropy gradients
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(c) R/ry = 0.183

Figure 6.- Comparison of heating-rate dlstrlbutlons with theory for o = 0°%;
M, = 10.6, Re* = 1. 2x10® per foot.
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(a) Using tangent-cone pressures.

Figure 7.- Correlation of sharp-cone heating rates; M, = 10.6, Re* = 1.2><106, § = 15°,

30° < ¢ < 180°.
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Figure 7.- Concluded.
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Figure 8.- Comparison of stagnation-line heating rates with simple sweep theory;
Ré_ = 1.2x10% per foot, wgy = a + & - 5°, R/ry, = 0.
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Figure 9.- Correlation of blunt-cone heating rates; M_=10.6, &= 15°, a=20°
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Figure 10.- Comparison of blunt-cone hegting—rate distributions with theory
for o > 0°; M_ = 10.6, Re_ = 1.2x10° per foot.
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Figure 10.- Continued.
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Figure 10.- Concluded.
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Figure 11.- Comparison of surface flow with inviscid theory; M
§ = 15°,
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